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2000 Ph.D. The University of Tokyo 
2001–2008 Nagoya University 
2008—        Keio University

Kenichi Bannai（坂内健一）

Speciality: Arithmetic Geometry pure mathematics
• Various realizations of Polylogarithms
• Special Values of Hasse-Weil L-functions
• Bloch-Beilinson-Kato Conjecture

Self Introduction

2016—        RIKEN AIP/ Team Leader



Today

•RIKEN AIP 
•Research conducted by our team 
•Some Thoughts
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RIKEN（理化学研究所）

Research Institute dedicated to fundamental research 
in the natural sciences, including Physics, Chemistry, 
Biology, Medicine, Engineering, Informatics & more 
recently, Mathematics

Head Quarters: 
　　Wakoshi  
　　　和光市    　　　 
　　Saitama Prefecture  
　　　埼玉県



RIKEN（理化学研究所）

Founded in 1917

“Paradise for Researchers”
Tradition of Autonomy for Researchers

Gave rise to many companies:

…

…



1917

RIKEN & Mathematics

Dairoku Kikuchi
2016

iTHEMS Interdisciplinary Theoretical and Mathematical   
　　　　　 Sciences Program（Extension of iTHES） 

AIP    Center for Advanced Intelligence Project



RIKEN AIP

Mission 
• Develop Next-Generation AI Technology 

• Accelerate Scientific Research 

• Solve Socially Critical Problems 

• Consider Ethical, Legal and Social issues of AI 

• Develop Next Generation of AI researchers

MEXT AIP Project

April 2016 March 2026

MEXT AIP Project



RIKEN AIP

Nihonbashi 
Office



Goal-Oriented 
Technology

Artificial 
Intelligence in 

Society

Generic 
Technology

7 Teams

16 Teams

19 Teams

Research Groups

Here!

RIKEN AIP

7 Teams

16 Teams

19 Teams



No Experience 
except pure 
mathematics

2016

Please organize a team of 
mathematicians to achieve a 

breakthrough in AI

Masashi Sugiyama 
Director AIP

Masashi Sugiyama 
Director AIP

RIKEN AIP



Behind each breakthrough, 
a mathematical theory

Statistical Inference

Optimization Theory Machine 
Learning

Manifold Theory

? !
Breakthrough with New Mathematical Theory ?!

RIKEN AIP



Conjecture

Pure Mathematics Special Values of L-functions of Algebraic Varieties

p-adic 
Cohomology 

Theory

Hodge Theory

Algebraic 
Number Theory

Algebraic Geometry

Theory of Motives
Etale 

Cohomology Theory

Collaborative Research with Experts of Different Fields

Bloch-Beilinson-Kato Conjecture

RIKEN AIP



Machine Learning

Machine Learning

Machine Learning Fundamental Problems in Machine Learning

Collaborative Research with Experts of Different Fields

Number Theory

Optimization Probability Theory

Representation 
      Theory

Algebraic Geometry

Differential 
Geometry

Algebraic 
Topology

PDE

Dynamical Systems

Theoretical Physics

Operator Algebra

Statistical Methods

Arithmetic 
Geometry

Graph Theory

RIKEN AIP



The Team
Research Scientist/Postdoctoral Researcher 
　　K. Hagihara (Arithmetic Geometry) 
　　M. Ikeda (PDE) 
　　T. Kuwahara (Mathematical Physics) 
　　A. Sannai (Algebraic Geometry) 
　　K. Tojo (Representation Theory) 

RIKEN SPDR（Own Research） 
　　E. Kiral (Analytic Number Theory) 
　　D. Takeuchi (Arithmetic Geometry) 
　　R. Sakamoto (Number Theory) 

6 Ph.D. Students, Over 13 visiting scientists in Arithmetic 
Geometry, Algebraic Topology, Differential Geometry, Graph 
Theory, Dynamical Systems, Real Analysis, Probability Theory, 
Optimization, Statistics



Machine 
Learning

Our TeamVisiting 
Scientists

Wider 
Mathematical 
Community

Our Approach



Times Series Data

0 21 …
t

x1 x2

x0

x′ 1
x′ 2x′ 0

{x0, x1, x2, …} {x′ 0, x′ 1, x′ 2, …}

How different?

time

First Example



Linear and Stable case
Example: Converging 

Rotation

Times Series Data

Martin, A Metric for ARMA Processes, 
IEEE Transactions on Signal Processing, 
VOL. 48, NO. 4, APRIL 2000 

K. De Cock and B. De Moor, Subspace angles 
between ARMA models, Systems & Control  
Letters, 46:4 (2002), pp. 265–270. 

Defined “distance” or “angle” measuring
the difference of time-series data

xn+1 = Axn

non-Linear or non-Stable case?

First Example



Times Series Data

non-Linear or non-Stable case?
Dynamical  System

f x1 x2

x0
xn+1 = f(xn)

AIP Kawahara TL

• Reproducing Kernel Hilbert Space（RKHS） 
• Koopman/Perron-Frobenius Operator

Y. Kawahara, Dynamic Mode Decomposition with 
Reproducing Kernels for Koopman Spectral 
Analysis, NeurIPS2016

non-Linear

First Example



Times Series Data

non-Linear or non-Stable case?

f
x0

y1
y2

y0

Kernel Function 
k(x, − )

Dynamical  System

non-Linear

Linear #f

Perron-Frobenius Operator

First Example

x1
x2



Problem
Isao 

Ishikawa 
Arithmetic 
Geometry

Yuka 
Hashimoto  
Numerical 
LA

Masahiro 
Ikeda  
PDE

First Example



Times Series Data
non-Linear or non-Stable case?

x1 x2

x0

x′ 1
x′ 0

{x0, x1, x2, …} {x′ 0, x′ 1, x′ 2, …}

Succeeded in Defining “distance”

I. Ishikawa

I. Ishikawa, K. Fujii, M. Ikeda, Y. Hashimoto and Y. Kawahara,  
Metric on Nonlinear Dynamical Systems with Perron-Frobenius Operators,  
NeurIPS2018

First Example

Am(x, x′ ) := lim
t→∞

At
m({x0, …, xt}, {x′ 0, …, x′ t})

x′ 2

Awarded 2019 RIKEN Ohbu Prize（理研櫻舞賞）
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Figure 1: Orbits of rotation dynamics
by multiplying ↵ = |↵|e2⇡i✓ on the unit
disk with the same initial values.
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Figure 2: Comparison of empirical values (4) and
theoretical values (8) of the kernels AT

1 and A1 of
rotation dynamics with initial values z0

Szegö kernel Gaussian kernel KDMD[8]
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Figure 3: Discrimination results of various metrics for rotation dynamics with initial values z0.
Vertical and horizontal axes correspond to the dynamics in Figure 1.

Next, we show empirical results with Eq. (4) from finite data for this example.1 For A1, we consider
x1
↵,t

= ↵tz0, where ↵ = |↵|e2⇡i✓. And for A2, we consider x1
↵,t

= ↵tz0 and x2
↵,t

= ↵t+1z0 =
↵tz1. The graphs in Figure 1 show the dynamics on the unit disk with ✓ = {1/3, 1/4,⇡/3} and
|↵| = {1, 0.9, 0.3}. For simplicity, all of the initial values were set so that |z0| = 0.9.

Figure 3 shows the confusion matrices for the above dynamics to see the discriminative performances
of the proposed metric using the Szegö kernel (Figure 3a, 3b, 3f, and 3g), using radial basis function
(Gaussian) kernel (Figure 3c, 3d, 3h, and 3i), and the comparable previous metric (Figure 3e and
3j) [8]. For the Gaussian kernel, the kernel width was set as the median of the distances from data.
The last metric called Koopman spectral kernels [8] generalized the kernel defined by Vishwanathan
et al. [25] to the nonlinear dynamical systems and outperformed the method. Among the above
kernels, we used Koopman kernel of principal angle (Akkp) between the subspaces of the estimated
Koopman mode, showing the best discriminative performance [8].

The discriminative performance in A1 when T = 100 shown in Figure 2c converged to the analytic
solution when considering T ! 1 in Figure 2a compared with that when T = 10 in Figure 2b. As
guessed from the theoretical results, although A1 did not discriminate the difference between the
dynamics converging to the origin while rotating and that converging linearly, A2 in Figure 3b did.
A2 using the Gaussian kernel (Ag2) in Figure 3d achieved almost perfect discrimination, whereas
A1 using Gaussian kernel (Ag1) in Figure 3c and Akkp in Figure 3e did not. Also, we examined the

1The Matlab code is available at https://github.com/keisuke198619/metricNLDS
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Thank you for listening !
For detail, check arXiv 1805.12324 !

α = |α|e2πθ |α| = 1
|α| = 0.9
|α| = 0.3
θ = 1/3
θ = 1/4
θ = π/3
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Figure 3: Discrimination results of various metrics for rotation dynamics with initial values z0.
Vertical and horizontal axes correspond to the dynamics in Figure 1.

Next, we show empirical results with Eq. (4) from finite data for this example.1 For A1, we consider
x1
↵,t

= ↵tz0, where ↵ = |↵|e2⇡i✓. And for A2, we consider x1
↵,t

= ↵tz0 and x2
↵,t

= ↵t+1z0 =
↵tz1. The graphs in Figure 1 show the dynamics on the unit disk with ✓ = {1/3, 1/4,⇡/3} and
|↵| = {1, 0.9, 0.3}. For simplicity, all of the initial values were set so that |z0| = 0.9.

Figure 3 shows the confusion matrices for the above dynamics to see the discriminative performances
of the proposed metric using the Szegö kernel (Figure 3a, 3b, 3f, and 3g), using radial basis function
(Gaussian) kernel (Figure 3c, 3d, 3h, and 3i), and the comparable previous metric (Figure 3e and
3j) [8]. For the Gaussian kernel, the kernel width was set as the median of the distances from data.
The last metric called Koopman spectral kernels [8] generalized the kernel defined by Vishwanathan
et al. [25] to the nonlinear dynamical systems and outperformed the method. Among the above
kernels, we used Koopman kernel of principal angle (Akkp) between the subspaces of the estimated
Koopman mode, showing the best discriminative performance [8].

The discriminative performance in A1 when T = 100 shown in Figure 2c converged to the analytic
solution when considering T ! 1 in Figure 2a compared with that when T = 10 in Figure 2b. As
guessed from the theoretical results, although A1 did not discriminate the difference between the
dynamics converging to the origin while rotating and that converging linearly, A2 in Figure 3b did.
A2 using the Gaussian kernel (Ag2) in Figure 3d achieved almost perfect discrimination, whereas
A1 using Gaussian kernel (Ag1) in Figure 3c and Akkp in Figure 3e did not. Also, we examined the

1The Matlab code is available at https://github.com/keisuke198619/metricNLDS
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Next, we show empirical results with Eq. (4) from finite data for this example.1 For A1, we consider
x1
↵,t

= ↵tz0, where ↵ = |↵|e2⇡i✓. And for A2, we consider x1
↵,t

= ↵tz0 and x2
↵,t

= ↵t+1z0 =
↵tz1. The graphs in Figure 1 show the dynamics on the unit disk with ✓ = {1/3, 1/4,⇡/3} and
|↵| = {1, 0.9, 0.3}. For simplicity, all of the initial values were set so that |z0| = 0.9.

Figure 3 shows the confusion matrices for the above dynamics to see the discriminative performances
of the proposed metric using the Szegö kernel (Figure 3a, 3b, 3f, and 3g), using radial basis function
(Gaussian) kernel (Figure 3c, 3d, 3h, and 3i), and the comparable previous metric (Figure 3e and
3j) [8]. For the Gaussian kernel, the kernel width was set as the median of the distances from data.
The last metric called Koopman spectral kernels [8] generalized the kernel defined by Vishwanathan
et al. [25] to the nonlinear dynamical systems and outperformed the method. Among the above
kernels, we used Koopman kernel of principal angle (Akkp) between the subspaces of the estimated
Koopman mode, showing the best discriminative performance [8].

The discriminative performance in A1 when T = 100 shown in Figure 2c converged to the analytic
solution when considering T ! 1 in Figure 2a compared with that when T = 10 in Figure 2b. As
guessed from the theoretical results, although A1 did not discriminate the difference between the
dynamics converging to the origin while rotating and that converging linearly, A2 in Figure 3b did.
A2 using the Gaussian kernel (Ag2) in Figure 3d achieved almost perfect discrimination, whereas
A1 using Gaussian kernel (Ag1) in Figure 3c and Akkp in Figure 3e did not. Also, we examined the

1The Matlab code is available at https://github.com/keisuke198619/metricNLDS
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Figure 3: Discrimination results of various metrics for rotation dynamics with initial values z0.
Vertical and horizontal axes correspond to the dynamics in Figure 1.

Next, we show empirical results with Eq. (4) from finite data for this example.1 For A1, we consider
x1
↵,t

= ↵tz0, where ↵ = |↵|e2⇡i✓. And for A2, we consider x1
↵,t

= ↵tz0 and x2
↵,t

= ↵t+1z0 =
↵tz1. The graphs in Figure 1 show the dynamics on the unit disk with ✓ = {1/3, 1/4,⇡/3} and
|↵| = {1, 0.9, 0.3}. For simplicity, all of the initial values were set so that |z0| = 0.9.

Figure 3 shows the confusion matrices for the above dynamics to see the discriminative performances
of the proposed metric using the Szegö kernel (Figure 3a, 3b, 3f, and 3g), using radial basis function
(Gaussian) kernel (Figure 3c, 3d, 3h, and 3i), and the comparable previous metric (Figure 3e and
3j) [8]. For the Gaussian kernel, the kernel width was set as the median of the distances from data.
The last metric called Koopman spectral kernels [8] generalized the kernel defined by Vishwanathan
et al. [25] to the nonlinear dynamical systems and outperformed the method. Among the above
kernels, we used Koopman kernel of principal angle (Akkp) between the subspaces of the estimated
Koopman mode, showing the best discriminative performance [8].

The discriminative performance in A1 when T = 100 shown in Figure 2c converged to the analytic
solution when considering T ! 1 in Figure 2a compared with that when T = 10 in Figure 2b. As
guessed from the theoretical results, although A1 did not discriminate the difference between the
dynamics converging to the origin while rotating and that converging linearly, A2 in Figure 3b did.
A2 using the Gaussian kernel (Ag2) in Figure 3d achieved almost perfect discrimination, whereas
A1 using Gaussian kernel (Ag1) in Figure 3c and Akkp in Figure 3e did not. Also, we examined the

1The Matlab code is available at https://github.com/keisuke198619/metricNLDS
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Recent
Reproducing Kernel Hilbert Space（RKHS）

: set, 　  : positive definite kernel  
　　  (i)   

　　　 (ii)  for any 

& k : & × & → ℂ
⇔ k(x, y) = k(y, x)

n

∑
i, j=1

cik(xi, xj)cj ≥ 0 x1, …, xn ∈ &, c1, …, cn ∈ ℂ

&
：Hilbert Space（RKHS）∃ℋk

k(x, − )
⊂ Map(&, ℂ)

Def.



Recent

Reproducing Kernel Hilbert C* module（RKHM）

: set, 　  
　       (i)   

　　　 (ii)  for any 

& k : & × & → /
k(x, y) = k(y, x)*

n

∑
i, j=1

c*i k(xi, xj)cj ≥ 0 x1, …, xn ∈ &, c1, …, cn ∈ ℂ

&
：Hilbert C* module（RKHM）∃ℋk

k(x, − )
⊂ Map(&, /)

Def.

+ Takeshi Katura, Fuyuta Komura

：C* algebra/



 algebraC*
Def（  algebra） 
　　  ：  algebra　 　(i)  ：Banach Algebra over  
　　　　　　　　　  　 　(ii)  involution  
　　　　　　　　　　　　(iii)   
　　　　　　　　　　　　(iv)  

C*
/ C* ⇔ / ℂ

∃ *: / → /
∀λ ∈ ℂ a ∈ /, (λa)* = λa*
∀a ∈ / ∥aa*∥/ = ∥a∥/∥a*∥/

Example　　 　　　 　  

　　　　　　Bounded operators on Hilbert space 
　　　　　　von Neumann algebras

/ = Mn(ℂ) A* := tA ∀A ∈ Mn(ℂ)

First Idea: Replace  by ℂ Mn(ℂ)



Hilbert  modulesC*
　　  ：  algebra　 ：right  module 

Def（  inner product on ） 
　　 ：inner product　 　(i)  bilinear　　　　　　　　　
　　　　　　　　　　　　　　　　　 (ii)  
　　　　　　　　　　　　　　　　　(iii)  
　Norm　  　gives distance（topology） on  

/ C* ℳ /

/ ℳ
⟨ − , − ⟩ : ℳ × ℳ → / ⇔ /

⟨u, v⟩ = ⟨v, u⟩* ∀u, v ∈ ℳ

⟨u, u⟩ ≥ 0, ⟨u, v⟩ = 0 ⇔ u = 0

∥u∥ := ∥⟨u, u⟩∥1/2
/ ℳ

Def（Hilbert  module） 
　　  module with  inner product, whose 
　　topology is complete

C*

/ /



Representer Theorem
Thm（Representer Theorem） 
　　 ：von Neuman algebra 
　　 ：set,  ：positive definite kernel 
　　 ：Hilbert C*-module 

　　 ：loss function,　 

/

& k : & × & → /

ℋk ⊂ Hom(&, /)

h : & × /2 → /+ /+ := {aa* ∣ a ∈ /}

For any data  and , 

　  minimizing  is of the form 

　　　　　  for some 

x1, …, xn ∈ & a1, …, an ∈ /

u ∈ ℋk

n

∑
i=1

h(xi, ai, u(xi))

u( − ) =
n

∑
i=1

ci⟨xi, − ⟩ c1, …, cn ∈ /
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Experiments
Numerical results

Experiments with climate data in Japan
(available at https://www.data.jma.go.jp/gmd/risk/obsdl/).

(a) Original climate data at 47 locations

(b) Fitted Fourier series
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& = C([0,366], ℝ2) k(x, y) = − exp( −∥x − y∥2) / = L∞([0,366], ℝ)
Numerical results

(a) RKHM, For the Fourier se-
ries

(b) RKHS, For the original data

(c) RKHS, For the Fourier series
Application of RKHM to data analysis Yuka Hashimoto 16 / 19
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FY2021̶2026（Oct. 2021̶March 2027）

Emti Kahn 
RIKEN AIP



• Koiichi Tojo: A method to construct exponential families by 
representation theory 

• Tomotaka Kuwahara: Information-theoretic structure of 
quantum Boltzmann distribution 

• Masahiro Ikeda: Operator-theoretic approach for time-series 
data generated by nonlinear dynamical system 

• Akiyoshi Sannai: Deep learning with symmetry

Other Research
See AIP Open Seminar Videos

18th AIP Open Seminar 
https://aip.riken.jp/events/event_113730/



Thoughts



Mathematics vs Mathematical Science

Pure Mathematics

数学 数理科学

Pure & Applied 
Mathematics

“Mathematic”
Axiomatic
Rigor

+Numerical Computation 
+Algorithms 
+Applications 
+Statistics

+Logic 
+Category TheoryBourbaki

Reality



Feedback to Pure Mathematics
(with Makiko Sasada and Yukio Kametani)

Hydrodynamic Limit

I Goal: Derive deterministic macroscopic partial di�erential
equations from stochastic microscopic dynamics

I Key ingredient: the law of large numbers, through a space-time
scaling limit (also ] particles goes ! 1)

I Following the idea of the derivation of hydrodynamic equations
such as the Euler equation or the Navier-Stokes equation:
formulate and prove a “(convergence to) local equilibrium"

Hydrodynamic Limit
Derive deterministic macroscopic partial differential 
equations from stochastic microscopic dynamics



Feedback to Pure Mathematics
(with Makiko Sasada and Yukio Kametani)

Results

• Proposed a general framework to describe the microscopic 
model (axiomatized the model) 
• Divided the data of the model into the Geometric and 
Stochastic Data 
• Interpreted the number of parameters of the deterministic 
PDE in terms of invariants of the Geometric Data

Group Cohomology 
Cohomology of Graphs 
Projective Systems and Systematic Use of Duality



Feedback to Pure Mathematics

• K. Bannai, Y. Kametani, and M. Sasada, Topological 
Structures of Large Scale Interacting Systems via Uniform 
Locality, arXiv:2009.04699 [math.PR] 

• K. Bannai and M. Sasada, A Decomposition Theorem of 
Varadhan Type for Co-local Forms on Large Scale 
Interacting Systems, arXiv:2105.06043 [math.PR] 

• K. Bannai and M. Sasada, A Decomposition Theorem of 
Varadhan Type for Co-local Forms on Large Scale 
Interacting Systems, arXiv:2111.08934 [math.PR]

https://arxiv.org/abs/2009.04699
https://arxiv.org/abs/2105.06043
https://arxiv.org/abs/2111.08934


Feedback to Pure Mathematics

Working with people of various discipline gives 
very unexpected results

Diversity, Equity and Inclusion is VERY IMPORTANT


